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ABSTRACT

For the same expert knowledge, if we use different &— and V—operations in a fuzzy control
methodology, we end up with different control strategies. Each choice of these operations
restricts the set of possible control strategies. Since a wrong choice can lead to a low quality
control, it is reasonable to try to loose as few possibilities as possible. We formalize this
idea and show that it leads to the choice of min(a + b,1) for V and min(a, b) for &. This
choice was tried on NASA Shuttle simulator; it leads to a maximally stable control.

INTRODUCTION, MOTIVATIONS, AND MAIN RESULTS

In nfany situations (e.g., in space exploration), it is necessary to translate operator’s knowledge )(formulated
in natural-language terms) into actual control. According to a fuzzy control methodology (1, 10, 11}, we
must, first, determine membership functions that correspond to all natural- language terms (like “small” or
“big”) that appear in the rules. Second, we must choose operations that correspond to & and V. As a result
we get a membership function 7¢(u) for a control; then we need a method to transform this function ¢ (u)
into a single control value (a defuzzification method).

Different choices of &— and V— operations lead to control strategies of drastically different quality, so the
problem of choosing them is very important [8,9]. In the present paper, we propose two solutions:

1) When we make a choice, we thus restrict the set of possible control strategies. Since a wrong choice can
lead to a low quality control, it sounds reasonable to try to loose as few possibilities as possible. In other
words, it sounds reasonable to choose &— and v—operations in such a way that uncertainty corresponding
to mc(u) is the biggest possible. This methodology is well known in the case when the uncertainty is
probabilistic; it is called a mazimum entropy approach, and it is widely applied to various problems ranging
from processing physical data to processing uncertainties in expert systems [2,4,6,7].

Just like in a probabilistic case, we want to evaluate the uncertainty of a membership function as the average
number of binary questions that one needs to ask in order to determine the value. We prove that the desired
maximal uncertainty is attained when we use min(a + , 1) for V, and min(a, ) for &. In control terms, this
maximum entropy approach is proved to lead to maximally stable controls. This result is in good accordance
with common sense: we minimized the lost opportunities, and therefore, we ended up with the best possible
control. It is also in good accordance with the experiments on the NASA Johnson Space Center Shuttle
silumator, that showed that this choice of &— and V—operations lead to a maximally stable control [8,9].

2) The above arguments are reasonable only if we are ready to apply various defuzzification techniques to
extract the best control from mc(u). However, in industrial applications, a defuzzification rule is usually
fixed. Since this rule is not necessarily the most appropriate (see., e.g., [9,14]), it is reasonable to try to
depend on it to a smallest extent. In other words, in these cases, it is reasonable to choose & and V—
operations from the condition that the uncertainty related to wc(u) is the smallest possible.

We prove that this leads to the choice of max(a,bd) for V and @b for &. In control terms, this minimum
entropy approach leads to maximally smooth controls. This result is also in good corresponds with common
sense: since we were extremely cautious, we ended up with a very smooth control. This result is also in good
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accordance with the experiments on the NASA Space Shuttle simulator, that show that this kind of control
is the smoothest, and hence, it is the best control for problems like docking where smoothness is the main
requirement.

Detailed description and proofs can be found in {3].

HOW TO MEASURE UNCERTAINTY THAT CORRESPONDS TO A MEMBERSHIP
FUNCTION

In order to answer this question, let us recall where the values x(z) of a membership function come from. If
x(z) corresponds to, say, “small”, then x(z) is our degree of belief that z is small. One of the most natural
ways to express this “degree of belief” by a number is to ask several experts, whether they consider z small
or not, and after M out of N answer “yes”, take M/N as #(z) (see, e.g., [5]). This approach allows us to
interpret the value x(z) as a frequency (or, if you like, subjective probability) that z is small.

Suppose that we have a notion (like “small”) that is described by a function #(z). If the only thing we know
about some real value z is that it satisfies this property (e.g., “is small”), then how many binary questions
do we have to ask to determine z?

1. If we have finitely many (say V) alternatives, then it is natural to estimate the uncertainty by the smallest
number Q(N) of binary (“yes”-“nc”) that we have to ask in order to determine the alternative. It is well
known that this smallest number is attained when we apply binary search, and Q(N) = log,(N).

2. If the only knowledge we have is that the unknown value z belongs to an interval [a, b], then for each ¢ > 0,
we can define the e—uncertainty Q([a,b],€) of this knowledge as the smallest number of binary questions
that we have to ask in order to determine z with precision ¢ (i.e., in order to find an interval [zo—€,Z0+ £}
that contains z). For that, we can divide [a,}] into = (b — a)/(2¢) intervals [a,a + 2¢], [a + 2¢,a + 4¢], .oy
and thus Q([a, b}, €) = log,((b — a)/(2¢€)) ~ u— mlog,(2¢), where u = logy(b— @) and m = 1.

3. If the only knowledge we have is that z belongs to a finite union S of intervals, then we get a similar
formula with u = log,(u(S)), where p(S) is the total length (measure) of S.

4. Let us now consider the case when our knowledge about z is described by a piecewise-constant memf;ership
function, i.e., there exist values z; < 22 <...<Zn such that n(z) =0 for z < z; and z > zn, n(z) = const
on each of the intervals (zi, Ti+1), and for each 1, x(z;) coincides either with the value of m(z) for r < zi,
or with the values of x(z) for £ > z;. Such a function takes takes only finitely many different values
ho=0< h < hy < ... < hg.

So, hy—th part of th experts believe that z belongs to the set {z : ®(z) 2 h1}, (h2 — 1) of them believe that
z € {z : 7(z) > h2}, (ha — h2) of them believe that z € {z : 7(z) > ha}, ..., and hg — hg_y of them believe
thatz € {z:m(z) 2 i} Hz €{z:7(z) 2 hy}, then we need Q({z : #(z) > hi1},€) questions to determine
z with the precision €. If z € {z : #(z) > h2}, then we need Q({z : #(z) 2 h2},€) questions, etc. Therefore,
according to the opinion of b of experts, we need Q({z : 7(2) = h1},€) questions; according to the opinion
of (hy — h;) of the experts, we need to ask Q({z : =(z) 2 h2},¢) questions, etc. So, it is natural to define

the expected number of questions as Q(m,e)= Ef;ol(h.-.,.l - h)Q(7{z:x(x)2his1)  €)- One can prove that in

this case, m = sup, u(z) and v = T ico (hig1 — hi) loga(u{z : 7(2) 2 hit1}).

5. An arbitrary continuous membership 7 function can be approximated by piecewise-constant functions
Tn. So, we can define its e—uncertainty Q(m, ) as the limit of the values Q(7,,£). One can prove that
Q(m,€) ~ m(x) — u(x)logy(2¢), where m(r) = sup; 7(z), and u(7) = f(;"(') log,(p({z : #(z) > h}))dh.In
particular, if for some zo > 0, 7(z) = 0 for z < 0, #(0) = 1, x(z) = 0 for z > 2o, and for z € [0, z0), 7(z) is
continuous and decreasing, then u(7) = log,(zo) — (1/1n(2))I(x), where I(x) = [;°(1~=(z))/z dz coincides
with the expression that was introduced (from different assumptions) in [12, 13].

How to compare uncertainties of different membership functions? We say that uncertainty (u;, m;)
is not smaller than the uncertainty (uz,m), and denote it by (uy,m1) = (uz, m2) if there exists an o such
that for all € < €g, 1 — M3 logy(2¢) > uz —m2 log,(2¢). One can prove that (uy, ™) = (uz, my) if and only
if either m; > ma, or my = m; and u; > ua. %5_ 2 )
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WHAT IS FUZZY CONTROL? A BRIEF MATHEMATICAL EXPLANATION
Definition 1. Assume that a set S C R" is given. Elements £ = (21, ..., Zn) € S will be called states.

Comment. Informally, the values z,,...,z, describe everything that we need to know to make a control
decision. For example, if we control a heater/cooler, then n = 1, and the only variable we need to know
is the difference z; = ¢ — #o between the actual and the desired temperature. If we are controlling a
spaceship, then we need to know its coordinates zj,z3,z3, its current velocity vector (3 more variables
T4 = 1,Z5 = #3,T = £3), and 2 angles that describe the orientation. So, for a spaceship, n = 8.

Definition 2. Let us fix a finite set P of continuous membership functions. The elements of this set will be
called fuzzy properties.

Comment. As examples, we can consider “small”, “big”, “medium”, etc.

Definition 3. By an elementary formula E we mean an expression of the type P;(z;), where P, is a fuzzy
property. By a rule, we mean an expression of the type Ey, ..., Em — P(u), where E; are elementary formulas,
P is a fuzzy property, and u is a special variable reserved for control. Formulas E; are called conditions,
P(u) is called a conclusion of the rule. By a knowledge base we mean a finite set of rules.

Comment. As an example of the rule, one can consider a rule N(z;) — N(u), meaning that if the difference
t — to between the actual and the desired temperatures is negligible, then the control should be negligible.
Another possible rule is: SP(z;) — SN(u), meaning that if the difference t — ¢o is small positive, then we
need to apply a small negative control (i.e., switch on the cooler a little bit). A similar rule SN (z1) = SP(u)
tells that if it becomes a little bit cold, it is necessary to switch on the heater for a while.

Motivation of the following definitions. If we have a set of rules, then we can say that a control u is
appropriate if and only if one the rules is applicable, and u appropriate according to this rule. Let us denote
the statement “control u is appropriate” by C(u). Then, for the three rules that describe the cooler/heater,
we have the following informal “formula” that describes when a control u is appropriate:
C(u) = (N(z)&N(u)) V (SP(z)&SN(u)) V (SN (z)&SP(u)).

Since N(z), N(u), ..., are fuzzy statements, we can get only fuzzy conclusions about the control, i.e., thus
defined C(u) also becomes a fuzzy statement. To get the precise values, we need to choose some operations
that would describe & and V for fuzzy values.

After we choose them, we can use the above formula to describe for each u, what is the reasonable degree of
belief that this value u is an appropriate control. In other words, we will be able to generate a membership
function mc(u) that corresponds to control. After that, we need some defuzzification procedure that would
transform this membership function into a single recommended control value.

The meaning of the &—operation is as follows: Suppose that we have two statements A and B. Our degree
of belief in A is equal to a, and our degree of belief in B is equal to b. If we have no other information about
A and B, what must the reasonable degree of belief in A& B equal to? This reasonable degree of belief will
be denoted by fi.(a,b). In the same situation, a reasonable degree of believe in A vV B will be denoted by
fv(a,b), and fy will be called an V—operation.

In describing uncertainty of a membership function, we used the interpretation of membership values 7(z) as
frequencies. Namely, we assumed that as a truth value ¢(A4) of an uncertain statement A, we take the ratio
t(A) = N(A)/N, where N(A) is the number of experts who believe in A, and N is the total number of experts
that were questioned. In this interpretation, the following inequalities are true: N(AV B) < N(A) + N(B),
N(AVB) < N,N(AVB) 2> N(A) and N(AV B) > N(B). If we divide both sides of these inequalities by N,
and combine them into one, we get the following inequality: max(t(A),t(B)) < t(AVB) < min(t(4)+t(B), 1),
hence max(a,b) < fv(a,b) < min(a + b,1). Likewise, from N(A&B) < N(A) and N(A&B) < N(B) we
conclude that t(A&B) < min(t(4),t(B)) and fi(a,b) < min(a, b).

If belief in A and belief in B were independent events, then we would have (A& B) = t(A){(B). In real life,
beliefs are not independent: if an expert has strong beliefs in several statements that later turn out to be

true, then this means that he is really a good expert, and t}Monable to expect that his degree
G2-2
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of belief in other statements that are true is bigger. If A and B are complicated statements, then many of
those experts who believe in A are really good experts, and therefore they believe in B as well (and hence in
A& B). Therefore, the total number N(A&B) of experts who believe in A&B must be bigger than the same
number in the case when beliefs in A and B were uncorrelated random events. So t(A&B) > t(A)(B), and
fu(a,b) > ab. In statistical terms we can express this inequality by saying that A and B are non-negatively
correlaied. So, we arrive at the following definitions:

Definition 4[9]. By an and-or pair we will understand a pair of continuous functions fu, fv:[0,1]x[0,1} —
[0,1), that are non-decreasing in both variables, and satisfy the following conditions:

max(a, b) < fu(a,b) < min(a + b,1); fv(a,b) < min(a,b); fe(0,a) = 0, fu(1,a) = a, fv(0,a) = a, fv(l,8) =
1; fv(a,b) = fv(b,a), fu(a,b) = fu(b,a). An and-or pair is called correlated if fi.(a,b) > ab for all a and b.

Denotation. For three numbers a,b,c, we define fy(a,b,c) = fu(fu(a,b),¢). For more than three
numbers a,b, ..., ¢, we define fg(a,b,...,c) = fe (. (fe{fu(a,b),...)c). Likewise, we define fy(a,b,...,c) =
Fo((fv(fv(a,b), ... )e).

Definition 5. Suppose that we are given a knowledge base K = {Ri, Rz, ...}, an and-or pair (fx, fv), and
a state £ € S. By a membership function, that corresponds to a rule Py(zi,), -y Pm(Zin) — P(u), we mean
a function 7gr = fu(P1(Zi,), -y Pm(Tim, P(u)). By a control membership function, that corresponds to the
knowledge base and a staie ¥, we mean a function 7c(u) = fu(TR,, TR, ---), Where Ry are rules from K.

OPERATIONS FOR WHICH UNCERTAINTY IS THE BIGGEST

Theorem 1. Suppose that K is a knowledge base, and T is a siale. Let us denote by wc(u) the con-
trol membership function, that corresponds to an arbitrary and-or pair (fe(a,b), fv(a,b)), and by #c(u)
the control membership function that corresponds to the and-or pair (min(a, b),min(a + b,1)). Then,
(u(7ic), m(#c)) = (u(wc), m(xc))-

So, the biggest uncertainty is attained when we use min(a, ) for &, and min(a + b,1) for V. It has been
proved in [9] that these very and-or operations lead to maximally stable controls. This result is in good
accordance with common sense: we minimized the lost opportunities, and therefore, we ended up with the
best possible control.

OPERATIONS FOR WHICH UNCERTAINTY IS THE SMALLEST

Theorem 2. Suppose that K is a knowledge base, and Z is a stale. Let us denote by mc(u) the control
membership function, that corresponds to an arbitrary correlated and-or pair (fr(a,b), fv(a,b)), and by 7c(u)
the control membership function that corresponds to the and-or pair (ab,max(a,d). Then, (u(rc),m(nc)) =
(u(®c), m(xc)).

So, the smallest uncertainty is attained when we use ab for &, and max(a, b) for V. It has been proved in [9]
that these very and-or operations lead to maximally smooth controls. This result is also in good corresponds
with common sense: since we were extremely cautious, we ended up with a very smooth control.

PROOFS

Lemma. If 7,(z) and 72(z) are membership functions, and my(z) > n2(z) for all z, then (u(m), m(m)) >

(u(72), m(m2)).

Proof of the Lemma. First, since 71(z) > ma(z) for all z, we can conclude that m(m,) = sup, m(z) 2
sup, m2(z) = m(wz). If m(m1) > m(w3), then (U(m), m(m1)) = (U(72), m(m2)). So, to prove the Lemma, it
remains to prove that if m(m;) = m(72), then U(m;) > U(72). Indeed, since we assumed that m;(z) > m2(z),
if m5(z) > h, then m(z) > h. So, {z : ma(z) > h} C {z : m1(z) 2 h}. Therefore, for every h, p({z : m(z) 2
h}) > u({z : m(z) > h}). Since we assumed that m(m) = sup, my(z) = sup, m2(z) = m(mz), we can
integrate this inequality from 0 to m(m;) = sup_ mi(z), and conclude that J; ™) y({z 2 m(z) > R} dh 2

fgn(n) p({z : m2(z) > h))dh,ie., that u(m) > u(72). Q.E.D. ’
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Proof of Theorem 1. According to Definition 5, 7c(u) = fv(TRy) TRas ...), where Ry, Ry, ... are all the
rules form the knowledge base K, and for each rule R of the type Pi(zi,), - Pa(zi,.) — P(u), we define mp
as 7r = fu(Pi(zi,), voey Pm(zi,.), P(u)). Likewise, fic(u) = fu(®R,, TRy, ---), Where fv(a,b) = min(a + 5,1),
and #g = min(P1(zi,), vees Pr(Zi s P(1))-

1°. According to our Definition 4 (of an and-or pair), fy(a,b) < min(a, b) for all a,b. Therefore, for each
rule Ri, min(Pi(zy,), vy Pra(zi ), P(u)) 2 fu(Pi(zi,), s Prm(Zin)s P(u)), i.e., ¥R, > 7R,

2°. According to Definition 4, fv if non- decreasing in each of the variables. So, from ¥g, > 7R,, We
conclude that mc(u) = fu(TR,, FRy» ) S Sv(TR,, TRy )

3°. Now, according to Definition 4, fv(a,b) < fv(a,b) for all a,b. Hence, fv(®R,, ¥Ry )
fv(®R,, FRa» ) = i’c(u).

Combining 2° and 3°, we conclude that 7c(u) < Fc(u). Application of the Lemma completes the proof.
Proof of Theorem 2. Here, nc(u) = fv(7R,,7R,,-..), Where and for each rule R of the type
Pl(zh),...,P,D(z,-,_) — P(u), TR = f&(Pl(z.',),....,Pm(:;_),P(u)). Likewise, i‘c(u) = ma.x(i'rnl,i'm,,...),
where #r = fu(Pi(zi,), - Pm(zin ), P(u)) and fu(a,b) = ab. .

1°. According to our definition of a correlated and-or pair, fi(a,b) > ab = fu(a,b) for all a, b. Therefore,
for every rule Ry, fu(Pi(zi,)s - Pm(2i.), P(u)) 2 fe(Pi(Zi), s Pn(zi.), P(u)), ie., R, 2 7R,

9¢. According to Definition 4, fy if non-decreasing in each of the variables. So, from *g, > 7R, , we conclude
that 7c(u) = fv(TR,, TRyr ) 2 fv(FRy s TRas ---)-

32, Now, according to Definition 4, fv(a,b) > max(a,b) for all a,b. Hence, fv(¥Rr,, TRy ) 2
ma.x(‘r'rR‘ , ‘TTR,, ) = i’c(u).

Combining 2° and 3°, we conclude that rc(u) 2 #c(u). Application of the Lemma completes the proof.
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